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Abstract 

 

In backprojection cone beam CT each cone beam image is 
first filtered, then 3D backprojected into the object space.  
In this paper the filtering point spread function (PSF) is 
derived analytically.  It is found that the PSF is in the form 
of 1D Hilbert transforms.  The PSF finds applications in a 
number of aspects in long object imaging, including 
backprojection implementation of the local ROI algorithm, 
elimination of the second intersection artifact, reduced 
pitch spiral scanning for increased S/N, and reduction of 
spiral overscan in long object imaging.   
 
 
I.  Filtering point spread function 
 

Backprojection cone beam image reconstruction [1,2,8,9] 
consists of two steps: a 2D step and a 3D step.  First, each 
cone beam image undergoes 2D filtering.  Then the filtered 
image is backprojected into the object space in the 3D step.  
2D filtering consists of the following 4 sub-steps: (1) 1D 
projection of the cone beam image at angle θ; (2) 
Differentiation of the projections; (3) Backprojection of the 
projection derivative in the same direction.  Sub-steps (1) 
through (3) are carried out for θ in the angular range [η-
π/2, η+π/2] forming a backprojection image, where η is the 
angular displacement (from the u axis) of the direction t

�
 

which is the projection of the scan path tangent on the 
detector.  Finally, (4) take the derivative of the 
backprojection image in the projected scan path direction 
t
�

.  The filtered image Y after these 4 sub-steps can be 
written as: 
 
 Y = Dt{ ])()P()D[B(d )r( θθθθ θ∫ }M(X)        (1)    

 
where  X is the cone beam image, M the data-combination 
masking operation [5], P(θ) the projection operation in the 
direction θ, Dr(θ) the differentiation operation w.r.t. the 
spatial variable r for the projection at angle θ, B(θ) the 
backprojection operation in the direction θ, and Dt the 
differentiation (spatial) operation in the projected scan path 
direction t

�
.  The reason that the projection and 

backprojection operations in Equation (1) are carried out for 
θ in the angular range [η-π/2, η+π/2] is to ensure that the 
product of the derivative d/dt with d/dr has the same sign 
for all the angles within the range; otherwise the signs of 
the product at different angles will be inconsistent. 

 
The sub-steps (1) through (3) can be combined into a 1D 
convolution step as follows: 
 
Theorem 1.  The combined operations of sub-steps (1) 
through (3) in the angular range [χ-π/2, χ+π/2] is 
equivalent to the 1D Hilbert transform in the direction of 
the unit vector χ�  which makes an angle χ with the detector 

u axis:   
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where χ&H  is the 1-D Hilbert transform in the direction of 

the unit vector χ� . χ&H  can be expressed as a 2-D function 

in Fourier space 
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For the cases where the projection/backprojection angular 
range is less than π, we have the following results: 
 
Theorem 2.  The combined operations of sub-steps (1) 
through (3) in the angular range [θ1, θ2], where θ1 ∈  [η-
π/2, η+π/2] and θ2 ∈  [η-π/2, η+π/2], is equivalent to the 
sum of two 1D Hilbert transforms:  
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II  Backprojection implementation of local ROI algorithm 
 

An exact backprojection driven spiral scan cone beam CT 
algorithm for ROI reconstruction using the local ROI 
technique was reported in [3,4].  For views in the interior of 
the spiral where the entire cone beam images undergo the 
filtering operation in Equation (1), the 2D filtering 
operation can be simplified to the efficient 1D ramp 
filtering operation in the direction t

�
.  For the views near 

the two ends of the spiral, the projection operation P(θ) is 
applied to only part of the masked cone beam image M(X).  
This is illustrated in Figure 1 which shows the projection 
operation for the cone beam images in the view angular 
range [π, 2π] measured from the spiral top.  The point C0 
on the u axis is determined by the angular displacement of 
the current source position from the spiral top.  During the 
projection operation, the line integrals on line segments 
which cross the u axis to the left of C0 are computed 

 



  

between the u axis and the bottom mask boundary, and the 
line integrals on line segments which cross the u axis to the 
right of C 0 are computed between the top and the bottom 
mask boundary.  
 
Applying Equations (2) and (4) yields the result that the 

d [B( )D ( )P( )rθ θ θ θ∫ ]  portion of the 2D filtering can be 

formulated as a superposition of spatially variant 1-D 
Hilbert transforms tH & , uH &  and ),( vuH ρ&  in the directions t

�
 

of the projection of the tangent of the spiral path, u
�

 of the 
horizontal detector axis and ),( vuρ�  of the unit vector 

pointing from the point C0 to the detector pixel (u,v), 
respectively [10].  These 1-D Hilbert transforms are 
illustrated in Figure 2. 
 
 
 

 
Figure 1.   Limits for integration line segments for source 

positions in the angular range [π,2π] from the spiral 
top  

 
 
 
 

 
Figure 2: 1-D Hilbert transforms contributing to the 

filtering of a cone-beam projection around the 
upper border of the ROI as illustrated in Figure 1 

 
 

 
III. Elimination of Second Intersection Artifacts 
 
A key part of the exact spiral cone beam CT reconstruction 
algorithm is the masking operation M to restrict the 
projection data to the appropriate angular range required 
for data combination [5].  The mask consists of a top curve 
and a bottom curve formed by projecting on the detector 
the spiral turn above and the turn below from the current 
source position.  Such masking procedure corresponds for 
the most part to the angular range bound by the prior and 
the subsequent source positions for data combination.  
Portions of some line integrals intersecting the mask, 
however, do not conform to the proper data combination 
angular range.  Consider the top mask boundary and the 
line L illustrated in Figure 3, where the spiral path which 
projects onto the mask boundary scans from right to left.  
Line L intersects the mask boundary at 2 points M1 and M2, 
in other words the integration plane defined by the line L 
and the current source position intersects the scan path at 
M1, M2, and the current source position.  It can be easily 
seen that M1 is the next source position after the current 
one, and M2 is the next source position after M1.  Thus the 
portion of the line segment that corresponds to the data 
combination angular range, i.e. the x-ray data in the angular 
range bounded by the previous source position below and 
the next source position above, is the segment to the right 
of M1.  It is this segment alone that should be included in 
the projection operation P(θ), i.e. line integration. 

Figure 3. A line of integration intersecting the top mask 
two times. 

 
 
 
In the literature it has been shown [8,9] that the filtering 
operation of Equation (1) can be simplified using 
techniques such as 1D ramp filtering, Fourier space 
convolution, or linogram.  In arriving at these results it is 
assumed that the entire line segment is included in the 
projection operation.  That is to say not only the segment to 
the right of M1 but also the segment to the left of M2 is 
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included in the projection operation.  Such unneeded 
contribution to projection occurs whenever the line of 
integration intersects the mask boundary more than once.  
We refer to such cases as second intersection artifacts. 
 
Errors arising from such line integration occur on the line 
segment after the second intersection point M2. A method 
to correct for these artifacts in backprojection cone beam 
CT image reconstruction was reported in [6].  It was shown 
that the projection lines that intersect the top mask 
boundary more than once are those that lie within the 
angular range �

�
�= [τ(-W/2)-π/2, τ(∞)+π/2], where τ(∞) is 

the angle the tangent to the top mask boundary at u = ∞ 
makes with the u axis, τ (-W/2) is the angle the tangent to 
the top mask boundary at the left edge u = -W/2 of the 
detector makes with the u axis; τ(∞) = η = tan-1(h/2πa) is 
also the angle of the projection of the scan path direction on 
the detector.  For the correction of the second intersection 
artifacts for the upper mask boundary, the combined 
operation BDrP is applied to the cone beam image in the 
limited angular range θ ∈  �

�
�on the affected portions of 

the line segments.  Applying Equations (2) and (4) yields 
the result that the d [B( )D ( )P( )rθ θ θ θ∫ ]  portion of the 2D 

filtering results in two Hilbert transforms: (½ tH & ) in the 

directions t
�

 of the projection of the tangent of the spiral 
path, and (½ α&H ) in the direction of the unit vector α�  of 

the line which makes an angle α ∈ �
�
 with the detector u 

axis, intersects the pixel to be filtered, and tangential to the 
mask boundary.  These two Hilbert transforms are sketched 
in Figure 4a and 4b respectively.  

 
Figure 4.  1D Hilbert transforms: a. tH &    b. α&H  

 
 
 
 
IV.   Increasing S/N with reduced pitch scanning 
 
Increase the x-ray dosage in spiral cone beam scan to obtain 
higher S/N can be achieved by reducing the spiral pitch to 
1/3, 1/5, 1/7,…, of the original spiral pitch [11].  Take the 
case of pitch = 1/3.  Instead of combining cone beam data 
using the standard mask [5], the masked formed by 
projecting on the detector the second spiral turn above and 
the second turn below from the current source position is 
used.  Data combination performed in this way contains 
overlapping portions, and the overlap is such that there is a 
data redundancy of factor 3.  With the reduced pitch = 1/3, 
the modified mask boundary is the cone beam projection 
from the current source position of the second spiral turn 
above and the second spiral turn below, rather than the 
spiral turn above and the spiral turn below.  Since there are 
approximately 3 times the number of source positions in the 
pitch = 1/3 scan compared to the pitch = 1 scan, the total 
radiation exposure in the former is thus increased threefold 
compared to that of the latter, resulting in higher signal-to-
noise ratio. 
 
There is a flaw in this method, however, because a small 
number of integration planes which intersect the spiral path 
only once also intersect the spiral path with reduced pitch 
only once rather than 3 times.  To correct for this flaw, one 
solution is to calculate the contribution of these integration 
planes to the cone beam image filtered with the combined 
operation BDrP, multiply this portion by a factor of 2, and 
add the result to the filtered cone beam image.  The 
procedure is as follows.  Construct the two common 
tangents at angles τ(∞) and τ(-∞) respectively connecting 
the top and bottom mask boundary curves diagonally.  Then 
apply the combined operation BDrP to the cone beam 
image in the limited angular range θ ∈  �

�
�= [τ(-∞)-

π/2, τ(∞)+π/2], and only to those projections which do not 
intersect either the top or the bottom mask boundary.  
Applying Equations (2) and (4) yields the result that the 
procedure can be simplified as follows: for each angle 
α ∈ �

�
, 1D Hilbert transform along the 2 lines in the 

direction of the unit vector α�  which makes an angle α with 
the detector u axis and are tangential to the top and the 
bottom mask boundaries respectively.  This procedure is 
illustrated in Figure 5.    
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Figure 5. 1D Hilbert transforms illustrated at 2 of the 

angles ∈ �
�
.  

 
 
V.   Reduction of spiral overscan in long object solution 
 
The results in Equations (2) and (4) are also applied to 
reduce the amount of overscan in the backprojection local 
ROI algorithm [3,4].  Briefly, the Hilbert transforms shown 
in Figure 2 can be used to determine which portion of the 
ROI is affected by the cone beam data at each source 
position near the spiral ends; those data that do not affect 
the ROI will not be needed.  The details will be presented in 
[7].  
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                      Contribution from M = 1 planes:   
Hilbert transform along all tangents to each mask boundary



  

 


